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ABSTRACT 
 
This paper describes a methodology for using high-range-resolution ground-moving-target-indicator (HRRGMTI) profiles to 
aid the association process in an automated tracker. The tracker uses a Kalman filter to estimate the state of targets. These 
state estimates are used in addition to HRRGMTI measurements to perform data association. The HRRGMTI profiles used to 
develop and test the system are simulated using the MSTAR dataset of synthetic aperture radar (SAR) imagery. The 
performance of the system was estimated using a computer simulation that modeled the radars, ground vehicles, and creation 
of HRRGMTI profiles. Performance relative to a tracker that uses only kinematic information to perform data association is 
computed and presented. 
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1. INTRODUCTION 
 
In most scenarios of interest to U.S. commanders, it will be critically beneficial to know the current location of certain types 
of ground vehicles for extended periods of time. For instance, knowing the location of tactical ballistic missile (TBM) 
launchers at all times allows commanders to plan strikes at the most appropriate time. Additionally, maintaining track of 
mobile surface-to-air missiles provides current knowledge of air defense locations. In low-intensity conflicts or operations-
other-than-war, it would be useful to be able to track vehicles known to be carrying war criminals, weapons of mass 
destruction, or terrorists, so that they can be apprehended or attacked at the most feasible time. In larger-scale conflicts, U.S. 
commanders will want to know the locations of certain types of high-value military units such as armor, engineering units, or 
mobile command posts so that the intentions of enemy commanders can be inferred and so that the units can be attacked at a 
time that is most beneficial to U.S. commanders. 
 
Synthetic aperture radars (SAR) and ground moving target indicator (GMTI) radars, can be used to detect vehicles while they 
are stationary and while they are moving, respectively. While development of advanced exploitation techniques for SAR and 
GMTI data continues, less work is being done to better fuse information from the sensors and task them in a cooperative 
fashion so that the location and identity of ground vehicles can be maintained. The use of SAR and GMTI to track vehicles 
over extended move-stop-move cycles has been called continuous tracking or the maintenance of continuous identification. 
We will use the term Continuous Identification (or Continuous ID) to stress the importance of being able to maintain an 
identification of the vehicle over an extended period of time. 
 
Toyon Research Corporation has been involved in the development of the Continuous ID concept for many years.1,2 We have 
been active in the development of algorithms in several key technology areas. These developments have come a long way 
toward a solution to the continuous ID problem, but a complete solution does not yet exist. The work described in this paper 
was supported by a phase I SBIR sponsored by AFRL/SN. In this effort, we have focused on the key technology of using 
high-range-resolution (HRR) GMTI signatures to aid the association of GMTI detections when forming vehicle tracks. These 
ideas are presented in section 2.1 through 2.3 of this paper. In order to evaluate the potential effectiveness of these ideas, we 
have developed a testbed that models the operation of the sensors, ground vehicles, and algorithms involved in Continuous 
ID. The testbed is described in section 2.4. We have exercised the testbed on an example problem and present the results of 
this analysis in section 2.5. 
 

2. TECHNICAL DISCUSSION 
 
2.1 Signature-aided-tracking (SAT) approach 
There are two basic approaches that could be employed to perform SAT. The first technique relies on the ability to be able to 
classify target vehicles using stored templates that are created prior to the execution of a mission. Each new sensor 
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measurement is classified using the stored templates. The classification outcome is compared to the classification of tracks in 
the vicinity of the new measurement to help with the association process. This approach makes use of the traditional 
automatic target recognition (ATR) process and thus has some of the same strengths and weaknesses. For instance, it can be 
sensitive to variations between testing data and training data. In other words, if a target encountered in the field does not 
match a stored template for that target, then this technique will perform poorly. The second technique does not rely on stored 
templates, but rather dynamically collects templates during the course of a mission. When a new measurement is collected, it 
is compared to the previously collected measurements that have been associated with tracks in the vicinity of the new 
measurement. The degree to which the new measurements match the previously collected measurements is used to aid the 
association of the new measurement to a track. This approach has the advantage of being able to eliminate mismatches 
between training and testing data, but it has a weakness in that it takes time to acquire enough measurements to become 
feasible. This is because the HRRGMTI profiles change rapidly with aspect angle. Optimum matching performance occurs 
when the difference in angle between two measurements is less than a degree. This would require over three hundred evenly 
spaced measurements to make this technique feasible at any aspect, even assuming a fixed elevation angle. 
 
Each of the two techniques has advantages and disadvantages. A potential solution is to develop an algorithm that takes 
advantage of the strengths of each approach. For instance, the stored class templates could be used when no dynamic 
templates are available for a particular azimuth. When a dynamic template is available, it would be used instead. It will be 
key to determine a good point at which to switch between the two approaches. 
 
In Phase I of this effort we have developed the class-oriented (traditional ATR) approach for signature-aided tracking using 
HRRGMTI profiles. We plan to extend our approach to dynamic templates in a Phase II effort. A block diagram of the class-
oriented technique is shown in figure 1. The process begins with a batch of new measurements and a set of existing tracks. 
Validation regions about the tracks are set up, using kinematic information, to get a first filtering of the detections so that we 
do not consider associations that are physically impossible. For each detection in the validation region of a track, a kinematic 

association probability and a signature association probability are calculated. In this discussion, we focus on the estimation of 
the signature association probability. To estimate the signature association probability, we first compute the probability that a 
vehicle in track belongs to a class (Pi) and the probability that a vehicle producing a new measurement belongs to the same 
class (Pzi). The track probabilities are recursively updated using each measurement that is associated with the track. The 
measurement probabilities are computed once for each measurement. The probability that a vehicle in track is from the same 
class that produced a given measurement (signature association probability) is simply given by 
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Figure 1: Signature-Aided Association 
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where N is the number of classes. This probability can be combined with an estimate of the kinematic association probability 
(Pk) by simply multiplying the two numbers. As shown in figure 1, the resulting product can be used by the tracker to 
determine which detections should be associated with which tracks. 
 
The assignment of detections to tracks is done by using a two-dimensional assignment matrix. There is one row in the matrix 
for each track and one column in the matrix for each detection. Additionally, a null row and column are considered for tracks 
that get no detections and detections that are assigned no tracks. The elements of the matrix consist of the association 
probabilities that are computed using the product of the kinematic and feature association probabilities. For the results 
presented in this document, assignment was performed using the Munkres Algorithm. This algorithm selects assignments so 
that the sum of the squares of the values in the matrix that correspond to the assignments is minimized. We have rerun these 
cases using a modified auction algorithm to perform the assignments and this produced nearly identical results. 
 
2.1.1 Computation of Pzi 
The probability that a measurement belongs to a given class (Pzi) would best be computed by using probability density 
functions that represent the likelihood of getting a particular signature given the target class. Due to the volatility of the 
signatures, this would need to be done in several angle bins. The likelihood that a given measurement belongs to that class 
could be determined by computing the value of the pdf at the point specified by the measurement. Unfortunately, since range 
profiles often have over 100 elements, such a pdf would be very difficult to construct due to a lack of data and difficulty 
representing a 100-dimensional, or larger, function. As an alternative, the actual density function can be approximated by 
assuming a general form that requires the specification of a small number of parameters. This can still be difficult. For 
instance, a Gaussian approximation to a 100-dimensional function would require the specification of 10,000 parameters for 
the covariance matrix and 100 parameters for the means. 
 
We have approximated the multi-dimensional density function by creating a one-dimensional density function that represents 
the distribution of match scores when matching observations to a template range profile. The template range profile is created 
by taking the mean value of a set of range profiles in an angle bin. The one-dimensional density function is created by 
matching another set of range profiles against this template. The distribution of match scores provides a likelihood of getting 
a particular match given that the measurement belongs to a particular class. A different match-score pdf is created for each 
angle bin and each target class. In the next subsection, the matching algorithm that we used is discussed. We obtain a 
likelihood that a new measurement belongs to a particular class by computing the value of the matching density function at 
the point given by the match score which was found by matching the measurement to the template. 
 
In phase II, a better approximation to the pdf will be created. Possible approaches include the creation of a pdf that assumes 
independent Gaussian distributions in each range bin3 and the fitting of a chi-square distribution to the data4. 
 
The probability that the measured vehicle belongs to a given class can be computed using the likelihood obtained from the 
match-score pdfs: 
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where Mi is the match score when comparing a measurement to a template from a given class and pi(Mi) is the value of the 
pdf for class i at the match-score value. 
 
In the case of dynamic templates, the match-score pdf described above cannot be built using only a few measurements, so we 
must assume a pdf. However, the assumed pdf can still be based on experimental data. For instance, an experiment can be 
performed in which measurements from a given vehicle are matched against templates from the same vehicle at nearly the 
same aspect angle. We will create such pdfs in Phase II using collected data. Previous analyses at Toyon have indicated that a 
Gaussian density function approximates the shape of these pdfs fairly well. Additionally, we have seen that many of these 
pdfs have a similar mean and variance. It would thus be fairly accurate to assume that the match-score pdfs in the dynamic 
template algorithm would be the same as the experimental pdfs. 
 
2.1.2 Computation of Pi 
The computation of the probability that a vehicle in track belongs to a given class based on all of the measurements collected 
thus far is computed using a recursive application of Bayes’ Rule: 



 

 

where iω  is class i, N is the number of classes, s is the match score, Pn( iω ) is the probability that the track belongs to class 

iω  after n updates, and p(s| iω ) is the likelihood of getting match score s given that the track belongs to class iω . We 

computed the values for p(s| iω ) in this study using the match-score pdfs described in the previous subsection. In phase II, we 

will consider other approaches to computing p(s| iω ). 
 
2.1.3 Computation of Pk 
We have employed a six-state Kalman filter for estimating the state of tracks. We do not use road-clamping or interacting 
multiple models. This is a fairly simple estimation procedure, but one that has proven to work well in a sparse target 
environment. In order to estimate Pk, we use the location of the detection and the estimated location of a track provided by 
the Kalman filter at the time of the detection. Additionally, the estimated errors provided by the track and sensor covariance 
matrices are used. This is done by creating a residual covariance matrix that represents the density function of the error in the 
estimate and the measurement. The likelihood of getting a particular detection is computed by finding the value of the 
residual density function at the location of the detection. 
 
2.2 Analysis of range profile match surfaces 
A key driver of performance for signature-aided tracking is the ability to determine the azimuth at which a target is viewed. 
The reason that this is the case can be understood by analyzing what happens when a measured profile is matched against 
templates at a variety of different angles. In order to do this, we must first create templates and observations and then select a 
matching procedure. Our templates were created by averaging sets of range profiles over a one-degree azimuth angle span. 
The range profiles used for the templates were extracted from SAR images collected in the MSTAR data collection. For the 
match surfaces shown here, we use this template data for our “observation” data as well. (However, in the simulations 
described below, the observation data was extracted from different MSTAR SAR images than those used to create the 
templates.) 
 
The matching procedure that we selected was developed at AFRL and is used on the SHARP program. The matching 
algorithm used in SHARP was created by researchers at AFRL and is based on a linear regression fit of the input template 
and observation profile. Figure 2 illustrates the scoring method. Let X and Y represent vectors of template and observation 
RCS values, respectively. The vectors are ordered by range bin. The individual elements of X and Y are then regarded as 
coordinate pairs (i.e., the first coordinate pair is (first element of X, first element of Y) and so on), and a least squares line is 
fit to the coordinates. The vertical distance d from the observation profile RCS value to the least squares fit line is calculated 
for all RCS values in the observation profile vector. A score is then calculated from 

where N is the number of range bins used in the scoring procedure. N was chosen as 70 range bins (+/- 23 feet from the 
profile centroid) to allow some signature overshoot even for larger targets. The template and observation are initially aligned 
by their respective centroids. The centroid is defined as the range bin at which the area underneath the range profile has been 
bisected. The template is then shifted +/- 5 range bins to allow for slight template/observation range misalignments, and a 
score is computed at each shift. The minimum score from each of these shifts is then regarded as the final discriminant score 
for that particular template/observation profile combination. 
 
Given the above matching method, we can now compute what happens when we match templates at two different azimuths. 
Figure 3 contains a plot showing the match score obtained when T72 templates are matched against themselves at every 
azimuth. The resulting MSE scores give a two-dimensional match surface; the color coding indicates the height of the 
surface. In these match-surface plots, linear interpolation is used in regions of missing data so that the essential features of the 
figure are more evident. 
 
Figure 3 shows that the best (lowest) scores are obtained when the azimuth at which the observation is collected is the same 
as the azimuth of the template. This is intuitively obvious and indicates that we will need to know the azimuth of each vehicle 
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Figure 2: AFRL’s Linear Regression Matching Algorithm 
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Figure 3: Match Surface for T72 Matched Against T72 



 

 

being tracked fairly accurately in order for FAT with HRR profiles to be most effective. Additionally, it indicates that the 
match scores themselves can be used to help compute the azimuth of the target. For instance, one could find the minimum 
value of the match surface within a window and use that as the selected azimuth. We discuss our procedure for estimating the 
target’s azimuth in the next subsection. 
 
Figure 3 also shows that there is a significant degree of symmetry in the T72. By symmetry we mean that profiles collected at 
a particular angle clockwise from the nose of the vehicle are similar to profiles collected at the same angle taken in a counter-
clockwise direction from the nose of the vehicle. The dark blue line that goes from the upper left corner of the figure to the 
lower right corner indicates the presence of symmetry with respect to the centerline of the vehicle (a line going from the front 
of the vehicle to the back). Symmetry with respect to a line that is perpendicular to the centerline is also evident as seen by 
the shorter blue diagonals in the figure. Symmetry indicates that when using the best match score to compute azimuth, we 
could easily end up picking a symmetric angle rather than the true angle. 
 
Symmetry may also play a role when developing the dynamic template approach. A possible replacement for a dynamically 
collected template at a particular azimuth may be a template created from profiles collected at the symmetric angle. We will 
explore this notion in a Phase II effort. 
 
Figure 4 shows the match surface when the templates are M35 profiles matched against themselves. The M35 shows much 
less sensitivity to angle than the T72 in the forward half of the vehicle. This is indicated by the large rectangular regions of 
blue, and is due to the presence of a persistent scatterer that dominates the profile over a fairly large azimuth range. The M35 
also shows much less symmetry than the T72. 

 
Figure 5 shows the match surface when M35 templates are matched against T72 templates. The results indicate that the 
observations do not match very well even when they are at the same azimuth. The results also indicate that when both 
templates are near broadside, the match is fairly good. This is because the profiles tend to turn into a single lump near 
broadside for all types of vehicles. In response to this, we have set up a broadside exclusion zone so that when we are near 
broadside, we rely on kinematic information only and do not include the signature information. Note that the radar is least 
likely to detect a target at broadside due to the very slow range rate relative to the clutter. 

Figure 4: Match Surface for M35 Matched Against M35 



 

 

 
2.3 Azimuth estimation procedure 
To estimate the azimuth of a vehicle, we make use of road network information and the match surfaces described in the 
previous section. In previous analyses, we have used state estimates provided by the tracker instead of road network 
information, but this resulted in worse performance. In the future, we would like to combine both techniques due to the 
potential fragility of the road network approach. This fragility comes from the fact that there are errors in the road data and 
vehicles do not always travel on roads. 
 
We begin our azimuth estimation by clamping the 
detection to the nearest road segment that is in the same 
range bin, as shown in figure 6. We can then compute 
the direction that the vehicle is traveling using the 
Doppler measurement and knowledge of the sensor and 
road network geometry. Using this information, and 
knowledge of the radar’s position, we can estimate 
target azimuth. If the nearest road segment is the correct 
road segment, this gives us a good estimate of azimuth. 
However, if the vehicle is near an intersection, the 
correct road segment may not be the nearest segment. 
This is because there are typically large azimuth 
measurement errors present that are larger than the 
distance between roads when the target is near an 
intersection. We thus need a procedure for recognizing 
that we have a bad azimuth estimate and a method for 
dealing with the situation. We have chosen to recognize 
the problem by storing the best match that is obtained 
when matching an observation to all of the template 
classes. If the best match is worse than a threshold 

Figure 6: Geometry of Road-Clamping Algorithm 
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value, the azimuth is declared invalid and we search over a much larger window to find the correct azimuth based solely on 
the profile match. 
 
The search for the correct azimuth is done by comparing the observation to all of the templates from each class over a large 
azimuth span. The azimuth of the template that produced the best match score is selected as the correct azimuth. This is a 
simple approach that we plan to improve upon in the future. For instance, a joint pdf that captures the likelihoods of both the 
kinematic and feature matches could be created and used to compute an estimate of target azimuth. 
 
2.4 Testbed development 
Quantification of the performance of the signature-aided-tracking approach described above must account for the dynamic 
nature of the problem. Quantifying performance in a meaningful manner requires the use of a computer simulation. We have 
modified Toyon’s SLAMEM™ simulation in order to use it as a testbed for our algorithm development. The key pieces of 
this development are shown in the block diagram of figure 7. 
 

The SLAMEM™ simulation contains a model of ground vehicle operations, road networks, and terrain. In this effort we 
added the box labeled “HRR signature library.” When a vehicle is detected at a particular azimuth and elevation, a profile is 
selected from the signature library that is closest to the observed geometry. This signature is then attached to the detection 
and passed along to the tracker. This library was created using MSTAR data. In a Phase II effort we expect to make use of a 
developing signature library that is being created at AFRL/SN. 
 
A model of the aircraft and its sensor are used to determine when a set of ground vehicles are illuminated. For those vehicles 
that are illuminated, a clear-line-of-sight check is done to determine if the vehicle is masked by terrain. If the vehicle is not 
masked by terrain, its speed projected along the line-of-sight is computed to determine if it is above the minimum detectable 
velocity of the sensor. If it exceeds the MDV, a random number is drawn and compared to a probability of detection to 
determine if the vehicle is detected. If the vehicle is detected, its state is mapped into range, azimuth, and Doppler. 
Appropriate errors are added to each measurement component to reflect measurement errors. If more than one vehicle is in 
the same range, azimuth, and Doppler resolution bin, only one detection is created. The corrupted detections, along with the 
range profile, are sent to the tracker. 
 
The tracking module performs the state estimation of tracks given a set of measurements, the association of the detections to 
tracks, and the accumulation of evidence from multiple ID measurements that have been collected over time. State estimation 
is done using a six-state Kalman Filter. The measurements are associated to tracks by forming an assignment matrix that is 
filled with association likelihoods as discussed in Section 2.1.1. The accumulation of evidence using multiple measurements 
is performed by applying Bayes’ Rule. 
 
The tracker interacts with an HRR ATR module that computes the class probabilities for each measurement (Pzi). The ATR 
has stored templates for each class, created using MSTAR data. The data used in the signature library to represent 
measurements was taken from different target chips than those that were used to create the templates in the ATR module. The 

Figure 7: Analysis Testbed 
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ATR module computes the probabilities as discussed in Section 2.1.1. When 
we use dynamic templates for SAT, this module will contain software that 
collects the measurements and creates the dynamic templates. 
 
2.5 Evaluation of signature-aided tracking 
In order to quantify the performance improvement gained when using SAT, 
we have analyzed track performance in the scenario that is depicted in figure 
8. The figure shows the location of two aircraft that are located on orbits 
approximately 100 km from the center of the region. The aircraft are flying at 
an altitude of 66,000 ft and have two thirteen-minute scanning legs and two 
three-minute turns in their orbits. Two T72 tanks are located within the 12 km 
x 12 km box shown in the figure. The two aircraft have GMTI sensors which 
scan the region in an attempt to maintain knowledge of the location of each 
tank. Also traveling on the roads within the area are a number of M35 
background vehicles. We consider performance for a range of the number of 
background vehicles between zero and one hundred. 
 
The measure of performance that we will use to quantify the effectiveness of SAT is the duration of a track. The track 
duration is not simply the length of time that the track exists in the tracker. Rather, it is the length of time that we are able to 
maintain knowledge about the location of a particular vehicle. This measure is illustrated in figure 9. The figure shows a 
cartoon where the shaded squares represent vehicles at different times. The shaded bar at the bottom of the figure indicates 
which vehicle is the source of the detections used to update a track that starts with the blue vehicle. The track starts out gray, 
but when the black and gray vehicles come close together, some black detections are used to update the track. Eventually, the 
black vehicle separates from the gray vehicle and the track reverts back to pure gray detection updates. One metric that we 
consider for track duration is the length of time from track initiation to the time at which a single detection from another 
vehicle is used to update the track. This is noted as “perfect association” in figure 9. This is a harsh metric because a track 
may get updated once by a nearby vehicle, yet still be tracked for an extended period after the one false update. To account 
for this, we consider a window of time such that if the track is updated with a detection from the original vehicle during this 
time, then the track duration continues. This is illustrated by the continuation of the duration shown in the figure after the 
initial confusion with the black vehicle. Eventually, the white vehicle becomes confused with the gray vehicle and the track is 
transferred to it. At this point we consider the duration of the track to have ended. 
 

The results for the kinematic tracker when using the above measures of performance for a case with 50 background vehicles 
are plotted in figure 10. The figure shows the fraction of tracks that have the duration specified by the horizontal axis. The 
fraction of tracks was computed using multiple Monte Carlo trials of the simulation. A curve for both the perfect duration and 
windowed duration are shown. The results show that for this background density, the vehicles can only be tracked for a short 

Figure 9: Measure of Performance 
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period of time before a mistake is made. For example, a reasonable goal is to be able to track these vehicles for more than 
thirty minutes. Since we are far short of this goal, even for a small number of background vehicles, it is clear that assistance 
from signatures or something else is needed. 
 
By using the signatures of the vehicles as described earlier, the track duration can be significantly increased. This is shown in 
figure 11 where the track duration of 50% of the tracks is plotted versus the number of background vehicles. The bottom 
curve indicates the performance of the tracker when using only kinematic information. The middle curve indicates the 
performance when employing SAT. Note that performance is significantly improved over the kinematic-only case, but still is 
not quite as good as we would like to see at the higher number of background vehicles. The top curve in the figure shows the 
performance when using SAT with perfect knowledge of vehicle azimuth. This is a hypothetical case that can only be 
analyzed given ground truth, but it serves to illustrate that one of the key drivers of performance is the ability to correctly 
estimate the azimuth of a vehicle that is detected. 
 
Our results indicate that there is great potential for signature-aided tracking; however, there are many technical problems that 
must be addressed prior to the development of a deployable system. For instance, we have only considered two classes of 
vehicles in this example. In many situations many more classes will need to be considered in addition to an unknown class. 
Furthermore, we were able to get fairly good results with the SAT approach because we were able to use road information to 
help with the estimation of vehicle azimuth. Vehicles will not always travel on roads and thus an approach for better 
estimating azimuth without road information needs to be developed. Additionally, the vehicles that we were tracking did not 
stop at any time while we were tracking them. Since vehicles control where and when they stop, we need to develop 
logic that allows us to track them through move-stop transitions. 

Figure 10: Kinematic Tracking Performance 
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Figure 11: Signature-Aided-Tracking Performance 
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